Triplet Issues Discussed at the LCC

overview:\square summary of beam-beam tune shifts
\square optimum value for the crossing angle and its limits
\square orientation of the crossing angle planes
\square overview of the current baseline separation scheme
options for the triplet beam screens
adjustments of the transverse collision point

Beam-Beam Interaction

small amplitudes:
$\frac{\mathrm{F}}{\mathrm{v} \cdot \mathrm{p}} \approx \frac{\mathrm{N}_{2} \cdot \mathrm{r}_{\mathrm{p}}}{\gamma} \cdot \frac{\mathrm{r}}{\sigma^{2}} \longrightarrow$ quadrupole
intermediate amplitudes $(\mathrm{r} \approx \sigma): \longrightarrow$ strong non-linearity
\square large amplitudes: $\frac{\mathrm{F}}{\mathrm{v} \cdot \mathrm{p}} \propto \frac{2}{\mathrm{r}} \longrightarrow$ charged wire

Beam-Beam Parameter

\square tune shift with head-on collisions:

$$
\Delta \mathrm{Q}=\frac{\mathrm{N}_{2} \cdot \mathrm{r}_{\mathrm{p}}}{4 \pi \cdot \gamma \cdot \varepsilon} \longrightarrow \xi_{\text {beam-beam }}
$$

\square foot print:
particle tune depends on particle amplitude

Beam-Beam Limit

LHC working point:

$Q_{x}=64.31 ; Q_{y}=59.32$
$\mathrm{n}+\mathrm{m}<12(\mathrm{SppS})$

total beam-beam tune shift must be smaller than 0.015 !
the LHC features 3 proton experiments with head on collisions:

$$
\longrightarrow \quad \xi_{\text {tot }}=0.01 \longrightarrow \begin{aligned}
& \text { only } \Delta \mathrm{Q}=0.005 \text { tolerance for } \\
& \text { lattice and operation! }
\end{aligned}
$$

Long Range Beam-Beam

IR layout:

$$
\Delta \mathrm{L}=116 \text { meter }
$$

\longrightarrow additional head on collisions for a bunch separation of less than 232 meter
crossing angle:
\longrightarrow separate the two beams left and right from
the IP with additional orbit bumps

Long Range Beam-Beam

crossing angle:

additional features: \qquad generates additional tune shift
\longrightarrow requires larger triplet magnet aperture
\longrightarrow breaks the bunch symmetry (pacman bunches)
\longrightarrow generates additional orbit perturbations
\longrightarrow breaks symmetry between x, y planes
\longrightarrow odd order resonances are exited
\longrightarrow couples longitudinal and transverse motion

Long Range Beam-Beam

\square beam-beam force for large amplitudes:

$$
\frac{\mathrm{F}}{\mathrm{v} \cdot \mathrm{p}} \approx \frac{\mathrm{~N}_{2} \cdot \mathrm{r}_{\mathrm{p}}}{\gamma} \cdot \frac{2}{\mathrm{r}}
$$

orbit and tune shift (opposite sign for tune shift compared to head-on)
tune spread
total tune change depends on number of long-range collisions
\rightarrow non-uniform filling pattern creates different collision patterns
\rightarrow ca 135 different collision classes; (> 200 super pacman bunches)

Beam-Beam Parameter

tune change for long range interaction: $\Delta Q_{\mathrm{lr}}=\frac{\mathrm{N}_{2} \cdot \mathrm{r}_{\mathrm{p}}}{2 \pi \cdot \gamma} \cdot \frac{1}{\phi^{2} \cdot \beta^{*}}$

$$
\text { with: } \quad d=2 \cdot \tan (\phi / 2) \cdot \mathrm{s} \quad(\phi=\text { total crossing angle })
$$

foot print:

Beam-Beam Parameter

alternate crossing angle planes in IR1 and IR5:

\longrightarrow partial compensation of the long range tune shift

foot print:

DINAT 〔Z00z•01•8

Long Range Beam-Beam

avoid long range beam-beam tune shift by large separation:
\rightarrow limited by mechanical aperture in triplet magnets
\rightarrow limits imposed by corrector strength
\square compensate the long range beam-beam effects:
$\rightarrow \quad$ alternate crossing angle planes in the IR's
$\rightarrow \quad$ summary of the LHC base line separation scheme
$\rightarrow \quad$ nominal LHC crossing scheme is barely sufficient

Maximum Beam Separation

tolerances for the mechanical acceptance:
$\rightarrow \quad \beta$-beat (10% beam size increase)
$\rightarrow \quad 27 \%$ spurious dispersion (normalised by $\sqrt{\boldsymbol{\beta}}$) (no possibility to correct vertical dispersion in LHC)
$\rightarrow 3 \mathrm{~mm}$ closed orbit tolerance
x-ing angle partially generated by offset in triplet orbit errors during squeeze
\rightarrow mechanical tolerances of the triplet components

Maximum Beam Separation

\square express mechanical acceptance by required collimator position:
$\rightarrow \quad$ required primary collimator position for protection

Parasitic Beam-Beam Encounters

beam separation in IR5: $\quad(300 \mu \mathrm{rad})$Leunissen et al. LHC Project Report 405

The scale with the tick marks indicates positions of beam-beam encounters

Options for Long Range Compensation

rely on compensation of alternate crossing angle planes
-IR2 requires vertical crossing angle -IR8 requires horizontal crossing angle
vertical / horizontal or horizontal / vertical
\longrightarrow requires simultaneous operation in IR1 / IR5
crossing angle planes at $45^{\circ} / 135^{\circ}$ or $135^{\circ} / 45^{\circ}$
\longrightarrow long-range tune shift transforms into coupling
 orbit effects still require alternate crossing
\longrightarrow more complex crossing angle bumps

Nominal LHC Collision Parameters

Bruning, Herr and Ostojic LHC Project Report 315
LHC Project Report 367

Insertion	proton - proton				ion - ion ($\mathrm{Pb}-\mathrm{Pb}$)			
	$\begin{gathered} \beta^{*} \\ {[\mathrm{~m}]} \end{gathered}$	$\begin{gathered} \phi \\ {\left[\begin{array}{l} \text { rad] } \end{array}\right]} \end{gathered}$	$\begin{gathered} \Delta \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {\left[\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]} \end{gathered}$	$\begin{gathered} \beta^{*} \\ {[\mathrm{~m}]} \end{gathered}$	$\begin{gathered} \phi \\ {\left[\begin{array}{l} \text { rad] } \end{array}\right.} \end{gathered}$	$\begin{gathered} \Delta \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {\left[\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]} \end{gathered}$
IR1	0.5	+/-150 (V)	0.0	10^{34}				
IR2	10.0	$\begin{aligned} & \text { +/- } 170 \text { (V) } \\ & \text { +/- } 100(\mathrm{~V}) \end{aligned}$	+/-0.17	10^{30}	0.5	$\begin{aligned} & \text { +/- } 170(\mathrm{~V}) \\ & \text { +/- } 100(\mathrm{~V}) \end{aligned}$	0.0	10^{27}
IR5	0.5	+/- 150 (H)	0.0	10^{34}				
IR8	1 / 35	$\begin{aligned} & +/-150(\mathrm{H}) \\ & +/-285(\mathrm{H}) \end{aligned}$	0.0	10^{32}				

Other Considerations for the Crossing Plane

correction of dispersion requires horizontal crossing plane

$$
\mathrm{D}_{\max }=1.26 \text { meter } \longrightarrow 0.6 \mathrm{~mm} \text { in triplet }\left(5 \cdot 10^{-4}\right)
$$

\longrightarrow however: horizontal / horizontal crossing provides no correction of long range beam-beam effects
correction of long-range beam beam effects with wire
applicability in operation not yet demonstrated installation simplified for vertical crossing

no correction for pacman bunches!

Other Considerations for the Crossing Plane

luminosity monitor can be simplified for fixed crossing planes
losses in triplet magnets smaller for horizontal crossing plane
\longrightarrow however horizontal / horizontal crossing does not provide compensation for long range beam beam effects
\longrightarrow triplet design includes these losses:
maximum gradient limited to $200 \mathrm{~T} / \mathrm{m}$ compared
to design value of $240 \mathrm{~T} / \mathrm{m}$
impact on detector background difficult to predict

Other Considerations for the Crossing Plane

losses in triplet magnets smaller for horizontal crossing plane
30% of nominal energy
[I. Baishev, JB Jeanneret]

Off Momentum Losses and Triplet Quench Limit

$0.6 \mathrm{~mW} / \mathrm{gr}$ in IR1

\longrightarrow no impact on relative performance!
$0.3 \mathrm{~mW} / \mathrm{gr}$ in IR5
estimated quench limit in triplet:
$1.2 \mathrm{~mW} / \mathrm{gr}$
\longrightarrow factor 2 safety margin
factor 3 safety required for other cold elements
\longrightarrow how confident are we in the quench limit estimate?
can we increase the quench limit via increased cooling?

Summary Crossing Planes

crossing angle value barely sufficient (limited by aperture)
\longrightarrow maximise triplet aperture!
base line crossing scheme works well for long range beam-beam compensation
crossing angle planes at 45° has not been demonstrated be beneficial
crossing scheme without alternate crossing does not compensate long range effects (pacman tune shift) and features larger orbit at IP
\longrightarrow impact on background and beam lifetime?

Summary Crossing Planes

all crossing angle planes are possible for larger β^{*}
\longrightarrow discussion only relevant for maximum performance!
no strong arguments to change baseline crossing from machine point of view
(except the argument that it is good to have flexibility)

what do we do if the operation conditions in IR1 and IR5 are very different?

Beam Screen in Triplet Magnets

there is no beam screen in the LHC base line design!
\longrightarrow only recently required by LHC-VAC to ensure vacuum stability
proposed beam screen layout similar to arc beam screen

-can be oriented along crossing plane
-orientation fixed after installation
-0.6 mm net aperture loss (->11\% in L)
-crossing at $45{ }^{\circ}$ still possible (loss in aperture)

Beam Screen in Triplet Magnets

proposed alternate beam screen (Ranko Ostojic)

the LHC-VAC group considers this design as too demanding (no manufacturer at hand that could produce this beam screen)

Current Situation for Beam Screen

use race track type beam screen
\longrightarrow beam screen must be ordered now
decide on beam screen orientation when magnets are installed
\longrightarrow the crossing angle planes are locked in 2004
any change from the above scenario requires strong reaction from the experiments!

Adjustment of the Collision Point

\square types of parallel bumps:
-common correctors for beam1 and beam2 (triplet corrector):
-most efficient use of corrector
-anti symmetric for beam1 and beam2
-no independent control for both beams
-independent correctors for beam1 and beam2:
-independent control for both beams
-requires large corrector strength
-reduces aperture in D1 and insertion
\longrightarrow vertex adjustments require independent corrector elements!

Parallel Vertex Displacement

independent orbit correctors for beam1 and beam2:
0.5 mm parallel bump:
-60\% of corrector strength
-0.75 mm orbit error in Q2
-1.5 mm orbit error in Q4

0.5 mm parallel bump is the limit for transverse adjust-ability

Parallel Vertex Displacement

corrector strength limit: 40% margin $->0.8 \mathrm{~mm}$ parallel bump
aperture limit in Q4:
have approximately 7 mm margin

aperture limit in triplet: we need all aperture that is available

0.7 mm orbit error in Q2
\longrightarrow
offsets $>0.5 \mathrm{~mm}$ require realignment of the triplet and TAS
\longrightarrow offsets $>0.8 \mathrm{~mm}$ require realignment of whole insertion +DS

Parallel Vertex Displacement

capability to align the detector would be desirable
remote controlled triplet alignment is delicate and the use questionable
$7.5 \mu \mathrm{~m}$ offset in Q2 generate 1σ offset at the IP!
(TAS aperture and 0.8 mm bump limit from corrector elements)
time required to realign?

LEP experience: need 16 quadrupoles for 10 mm

