

V. Hedberg - Univ. of Lund

University of Alberta

J.L Pinfold (Project leader),
J. Soukup (Chief Engineer),
B. Caron, A. Hamilton,
W.J. McDonald, Y. Yao

CERN

- P. Grafström

University of Lund

- V. Hedberg

MPI-Munich/CERN

- T. Hott

University of Montreal

- G. Azuelos, C. Leroy, J-P. Martin

SACLAY (Physics normalization only) - L. Chevalier, C. Guyot, J-F. Laporte

Motivation

Wanted:

- A very radiation hard detector to be used as luminosity monitor
- Good time resolution to resolve individual beam crossings
- Insensitive to soft background particles
- Pointing capability
- A large dynamic range and no saturation at the highest luminosity
- A simple, robust and cheap construction

Solution:

LUCID: LUminosity measurement using a Cherenkov Integrating Detector

The design is based on the Cherenkov Luminosity Counter (CLC) that is operating successfully at CDF.

Gasfilled tubes around the beampipe act as a Cherenkov detector and detects particles from the I.P. that are above the Cherenkov threshold (2.7 GeV for pions and 9 MeV for electrons)

Basics of the detector

2 detectors x 200 Al tubes filled with C_4F_{10} or Isobutane at atmospheric pressure

Winston cones at the end of the tubes focus the Cherenkov light onto quartz fibres

Location of the detector

The situation when the forward shielding is removed:

The front face of each detector is at 17 m from the IP $\eta_{max} = -\ln[\tan(0.26^{\circ}/2)] = 6.1$

 $\eta_{min} = -\ln[\tan(0.53^{\circ}/2)] = 5.4$

The fibre read-out

5 layers x 40 tubes x 7 fibres = 1400 fibres

Layer 3

Layer 4

V. Hedberg

LEADE meeting - 21.03.2005

The fibre read-out

A mock up of the TX1S shielding has been made at Univ. of Alberta to study fibre routing, space allocation & integration.

Reality

Mock Up

Radiation levels

Total Ionizing Dose (Gray/year) at a luminosity of 10³⁴ cm⁻²s⁻¹

LEADE meeting - 21.03.2005

Prototype Testing

The protype was read-out by a 5 inch PM.

The low counting rate (1/hour) is consistent with Monte Carlo predictions.

A beam test at Fermilab with muons is planned for this summer.

V. Hedberg

LUCID is described in a letter of intent to LHCC (CERN/LHCC/2004-010)

- The project was encouraged to continue by the LHCC

The LUCID Mechanial Design Report (EDMS: ATL-UL-ES-0001) details the

- Space allocation for LUCID
- Pattern of Cherenkov light-collecting tubes
- Design of Winston cones
- LUCID gas volume
- Front bulkhead
- Rear bulkhead
- Optical fibre feed-throughs
- Optical bundle tips
- Gas connections
- Weight of various LUCID elements
- Assembly procedure

An Engineering Change Request has been written but not yet circulated

- Clearance and alignment needs further study

Mechanical Design Report - Assembly

Mechanical Design Report - Assembly

V. Hedberg

LEADE meeting - 21.03.2005

LUCID Technique - tested at CDF

Much more light from primary particles than secondaries and soft particles.

- Much shorter paths for secondaries
- Cherenkov thresholds

A particle from the IP will produce about 320 photons of which some 230 will be collected by the Winston cone.

Excellent time resolution (140ps @ CDF)

- One can follow bunches

The detector is radiation hard and light (40 kg) since it is made of aluminium.

Simulation of detector responce to 20 GeV muons

LUCID Simulations

Since there is no Landau fluctuations for Cherenkov light emission one gets an excellent amplitude resolution.

- One can count multiple particles/tube
- No saturation of the detector even at very high luminosity

V. Hedberg

LUCID Simulations

Simulations shows a perfectly linear relationship between the number of particles measured in LUCID and the luminosity.

LUCID Simulations

The LUCID response when the IP is moved in X and Z:

Calibration & Dynamic Range

Calibration using elastic scattering data Lumi = 10²⁷ cm⁻²s⁻¹ Lumi = 10^{27} cm⁻²s⁻¹ $\rightarrow 10^{34}$ cm⁻²s⁻¹ A factor 10^7 ! At 10^{27} there will be $2x10^{-4}$ interactions/bunch $\rightarrow 1.7$ part./inter. At 10^{34} there will be 20 interactions/bunch $\rightarrow 33$ part./bunch

Calibration using single W/Z production Lumi > 10³⁰ cm⁻²s⁻¹ **The rate of W**--> lv is expected to be 60 Hz at high luminosity The uncertainty in the rate of W/Z events is currently about 4% CDF is also using the process W--> lv for absolute normalization

Calibration using γγ → μμ data Lumi > 10³⁰ cm⁻²s⁻¹

QED process

The muons are centrally produced with small acoplanarity About 10k events/day at high lumi if $P_T>3$ GeV (1.5k if $P_T>6$ GeV)

Overall Calibration

Cost estimate for LUCID

The LUCID detector is estimated to cost about 100 kCHF to build:

- 2400 machining hours @ 5 CHF/hour = 12 kCHF
- Material cost = 56 kCHF
- 1100 hours for assembly @ 5 CHF/hour = 6 kCHF
- Cost of tooling, jigs etc = 5 kCHF
- Contingency = 21 kCHF

The LUCID detector read-out is estimated to cost about 400 kCHF to build:

- 2800 fibres @ 10 CHF/m = 70 kCHF
- Fibre connectors, testing etc = 50 kCHF
- 44 multi-anode PMTs = 50 kCHF
- Fast co-ax ribbon cables = 40 kCHF
- Electronics = 120 kCHF (very provisional)
- Contingency = 70 kCHF

LUCID is a 400 channel Cherenkov detector made of aluminium tubes and read out by quartz fibres.

The purpose of the detector is to monitor the luminosity in ATLAS.

It should also be able to run independently from the main ATLAS DAQ so that it can assess the beam background conditions and provide luminosity to the LHC if so required.

A similar detector is in operation at the CDF experiment.

A good time resolution makes it possible to follow individual bunches.

A measurement of the pulseheight can be used to determine when several particles goes through one tube. No saturation is expected at even the highest LHC luminosity.