# Luminosity Considerations for the LHC (Ions) 

B. Muratori<br>CERN, AB-ABP Division

## Introduction

- Average Luminosity and Luminous region
- Hourglass not needed
- Calculations for the LHC (ions)
- Some results
- Conclusions

Average Luminosity and Luminous Region

- Simplest case $\rightarrow \mathcal{L}=\frac{N_{1} N_{2} f B}{4 \pi \sigma_{x} \sigma_{y}}$
- Luminous region $( \pm s) \rightarrow \mathcal{L}(s)=\int_{-s}^{+s} \mathcal{L}\left(s^{\prime}\right) d s^{\prime}$
- Integrated luminous region $( \pm s) \rightarrow$

$$
\mathcal{L}_{\mathrm{av}}(s)=\frac{1}{T} \int_{0}^{T} \int_{-s}^{+s} \mathcal{L}\left(s^{\prime}, t\right) d s^{\prime} d t
$$

- Crossing angle

Hourglass not needed

- $\sigma_{z}=\sigma_{z}^{*} \sqrt{1+\left(\frac{s}{\beta^{*}}\right)^{2}} \rightarrow$ hourglass
- Not needed for LHC ion parameters
- $N_{1}=N_{2}=7.0 \times 10^{7}$ particles/bunch
- 592 bunches/beam, $f=11.2455 \mathrm{kHz}$
- $\phi=100(\mathrm{CMS})-300(\mathrm{ALICE}) \mu \mathrm{rad}($ total $\times \angle)$
- $\beta_{x}^{*}=\beta_{y}^{*}=1.0 \rightarrow 0.5 \mathrm{~m}$ (squeeze), or
- $\beta_{x}^{*}=\beta_{y}^{*}=0.5 \mathrm{~m} \sigma_{x}^{*}=\sigma_{y}^{*}=15.9 \mu \mathrm{~m}$ (no squeeze)
- $\sigma_{x}^{*}=\sigma_{y}^{*}=22.5 \mu \mathrm{~m} \rightarrow 15.9 \mu \mathrm{~m}, \quad \sigma_{s}=7.7 \mathrm{~cm}$


## Calculations for the LHC

- Bunch length increases linearly by $30 \%$ in 10 hours for protons ( P . Baudrenghien)
- For ions: (IBS) $\rightarrow$ several cases: $20 \%, 30 \%, 40 \%, 50 \%$ in 3.5/6.6/13 hours
- Worst case shown for non squeezing scenarios
- Intensity falls off as

$$
N=N_{0} \exp \left(-\frac{t}{3.5 / 6.6 / 13 h r .}\right)
$$

## (O. Brüning - protons)

B. Muratc

## No Squeeze, 2 Experiments, $30 \%$ b.l.increase:



Figure 1: $\beta^{*}=0.5 \mathrm{~m}, \phi=100 \mu \mathrm{rad}$

Results: $30 \%$ bunch length increase, $\phi=100 \mu \mathrm{rad}$

- $\mathcal{L}=1.0 \times 10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 4.29 \times 10^{26}$ after 6.6 hours
- $100 \%$ lumi $\rightarrow s= \pm 20 \mathrm{~cm} \longrightarrow s= \pm 20 \mathrm{~cm}$
- $95 \%$ lumi $\rightarrow s= \pm 11 \mathrm{~cm} \longrightarrow s= \pm 12 \mathrm{~cm}$
- $90 \%$ lumi $\rightarrow s= \pm 8.5 \mathrm{~cm} \longrightarrow s= \pm 9.5 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 8 \mathrm{~cm} \longrightarrow s= \pm 8.5 \mathrm{~cm}$
- $80 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 7.5 \mathrm{~cm}$


## No Squeeze, 2 Experiments, $30 \%$ b.l.increase:



Figure 2: $\beta *=0.5 \mathrm{~m}, \phi=300 \mu \mathrm{rad}$

Results: $30 \%$ bunch length increase, $\phi=300 \mu \mathrm{rad}$

- $\mathcal{L}=8.31 \times 10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 3.91 \times 10^{26}$ after 6.6 hours
- $100 \%$ lumi $\rightarrow s= \pm 14 \mathrm{~cm} \longrightarrow s= \pm 14 \mathrm{~cm}$
- $95 \%$ lumi $\rightarrow s= \pm 9 \mathrm{~cm} \longrightarrow s= \pm 9.5 \mathrm{~cm}$
- $90 \%$ lumi $\rightarrow s= \pm 7.5 \mathrm{~cm} \longrightarrow s= \pm 8 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 7.5 \mathrm{~cm}$
- $80 \%$ lumi $\rightarrow s= \pm 6 \mathrm{~cm} \longrightarrow s= \pm 6.5 \mathrm{~cm}$

No Squeeze, 3 Experiments, 20\% b.l.increase:


Figure 3: $\beta *=0.5 \mathrm{~m}, \phi=100 \mu \mathrm{rad}$

Results: 20\% bunch length increase, $\phi=100 \mu \mathrm{rad}$

- $\mathcal{L}=1.0 \times 10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 4.3 \times 10^{26}$ after 3.5 hours
- $100 \%$ lumi $\rightarrow s= \pm 20 \mathrm{~cm} \longrightarrow s= \pm 20 \mathrm{~cm}$
- $95 \%$ lumi $\rightarrow s= \pm 11 \mathrm{~cm} \longrightarrow s= \pm 11.5 \mathrm{~cm}$
- $90 \%$ lumi $\rightarrow s= \pm 8.5 \mathrm{~cm} \longrightarrow s= \pm 9 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 8 \mathrm{~cm} \longrightarrow s= \pm 8.5 \mathrm{~cm}$
- $80 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 7.5 \mathrm{~cm}$


## No Squeeze, 3 Experiments, $20 \%$ b.l.increase:



Figure 4: $\beta *=0.5 \mathrm{~m}, \phi=300 \mu \mathrm{rad}$
B. Muratc

Results: $20 \%$ bunch length increase, $\phi=300 \mu \mathrm{rad}$

- $\mathcal{L}=8.31 \times 10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 3.57 \times 10^{26}$ after 3.5 hours
- $100 \%$ lumi $\rightarrow s= \pm 14 \mathrm{~cm} \longrightarrow s= \pm 14 \mathrm{~cm}$
- $95 \%$ lumi $\rightarrow s= \pm 9 \mathrm{~cm} \longrightarrow s= \pm 9 \mathrm{~cm}$
- $90 \%$ lumi $\longrightarrow s= \pm 7.5 \mathrm{~cm} \longrightarrow s= \pm 7.5 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 7 \mathrm{~cm}$
- $80 \%$ lumi $\rightarrow s= \pm 6 \mathrm{~cm} \longrightarrow s= \pm 6 \mathrm{~cm}$


## Squeeze



Figure 5: Intensity decay \& squeezing of $\sigma_{x, y}$
B. Muratc

## Squeeze



Figure 6: L. region for $\phi=100 \mu \mathrm{rad}, \beta^{*}=100 \mathrm{~cm}$, bunch l. 7.7 cm
B. Muratc


Figure 7: Same after 13hr. coast ( $30 \%$ b.l.i. \& int. decay, $\beta^{*}=50 \mathrm{~cm}$ )
B. Muratc


Figure 8: Both, normalised, $\left(\phi=100 \mu \mathrm{rad} \beta^{*}=100 \rightarrow 50 \mathrm{~cm}\right)$
B. Muratc

Results: $30 \%$ bunch length increase, $\phi=100 \mu \mathrm{rad}$

- $\mathcal{L}=5.05 \times 10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 3.47 \times 10^{26}$ after 13 hours
- $100 \%$ lumi $\rightarrow s= \pm 15 \mathrm{~cm} \longrightarrow s= \pm 20 \mathrm{~cm}$
- $95 \%$ lumi $\rightarrow s= \pm 10.5 \mathrm{~cm} \longrightarrow s= \pm 12 \mathrm{~cm}$
- $90 \%$ lumi $\rightarrow s= \pm 9 \mathrm{~cm} \longrightarrow s= \pm 10 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 7.5 \mathrm{~cm} \longrightarrow s= \pm 8 \mathrm{~cm}$
- $80 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 7.5 \mathrm{~cm}$


Figure 9: $40 \%$ b.l.i., normalised, $\left(\phi=100 \mu \mathrm{rad} \beta^{*}=100 \rightarrow 50 \mathrm{~cm}\right)$
B. Muratc

Results: $40 \%$ bunch length increase, $\phi=100 \mu \mathrm{rad}$

- $\mathcal{L}=5.05 \times 10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 3.46 \times 10^{26}$ after 13 hours
- $100 \%$ lumi $\rightarrow s= \pm 15 \mathrm{~cm} \longrightarrow s= \pm 21 \mathrm{~cm}$
- $95 \%$ lumi $\longrightarrow s= \pm 10.5 \mathrm{~cm} \longrightarrow s= \pm 12.5 \mathrm{~cm}$
- $90 \%$ lumi $\rightarrow s= \pm 9 \mathrm{~cm} \longrightarrow s= \pm 10.5 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 7.5 \mathrm{~cm} \longrightarrow s= \pm 8.5 \mathrm{~cm}$
- $80 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 8 \mathrm{~cm}$


Figure 10: $50 \%$ b.l.i., normalised, $\left(\phi=100 \mu \mathrm{rad} \beta^{*}=100 \rightarrow 50 \mathrm{~cm}\right)$
B. Muratc

Results: $50 \%$ bunch length increase, $\phi=100 \mu \mathrm{rad}$

- $\mathcal{L}=5.05 \times 10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 3.45 \times 10^{26}$ after 13 hours
- $100 \%$ lumi $\rightarrow s= \pm 15 \mathrm{~cm} \longrightarrow s= \pm 22 \mathrm{~cm}$
- $95 \%$ lumi $\rightarrow s= \pm 10.5 \mathrm{~cm} \longrightarrow s= \pm 13 \mathrm{~cm}$
- $90 \%$ lumi $\longrightarrow s= \pm 9 \mathrm{~cm} \longrightarrow s= \pm 11 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 7.5 \mathrm{~cm} \longrightarrow s= \pm 9 \mathrm{~cm}$
- $80 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 8 \mathrm{~cm}$


Figure 11: $30 \%$ b.l.i., normalised, $\left(\phi=300 \mu \mathrm{rad} \beta^{*}=100 \rightarrow 50 \mathrm{~cm}\right)$
B. Muratc

Results: $30 \%$ bunch length increase, $\phi=300 \mu \mathrm{rad}$

- $\mathcal{L}=4.56 \times 10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 2.86 \times 10^{26}$ after 13 hours
- $100 \%$ lumi $\rightarrow s= \pm 15 \mathrm{~cm} \longrightarrow s= \pm 15 \mathrm{~cm}$
- $95 \%$ lumi $\rightarrow s= \pm 10 \mathrm{~cm} \longrightarrow s= \pm 10 \mathrm{~cm}$
- $90 \%$ lumi $\rightarrow s= \pm 8.5 \mathrm{~cm} \longrightarrow s= \pm 8.5 \mathrm{~cm}$
- $85 \%$ lumi $\rightarrow s= \pm 7 \mathrm{~cm} \longrightarrow s= \pm 7 \mathrm{~cm}$
- $80 \%$ lumi $\longrightarrow s= \pm 6.5 \mathrm{~cm} \longrightarrow s= \pm 6.5 \mathrm{~cm}$


Figure 12: $40 \%$ b.l.i., normalised, $\left(\phi=300 \mu \mathrm{rad} \beta^{*}=100 \rightarrow 50 \mathrm{~cm}\right)$
B. Muratc


Figure 13: $50 \%$ b.l.i., normalised, $\left(\phi=300 \mu \mathrm{rad} \beta^{*}=100 \rightarrow 50 \mathrm{~cm}\right)$
B. Muratc


Figure 14: $100 \%$ b.l.i. normalised, $\left(\phi=300 \mu \mathrm{rad} \beta^{*}=100 \rightarrow 50 \mathrm{~cm}\right)$
B. Muratc

## Conclusions

- Detailed results will be available /afs/cern.ch/user/b/bmurator/public/lumi/ions/
- Hourglass not important for $\mathcal{L}$ with current settings $\rightarrow$ ignored
- Luminosity changes dramatically
- Luminous region changes for CMS/ALICE

